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P L A N E  W A V E S  A N D  F U N D A M E N T A L  S O L U T I O N S  

I N  L I N E A R  T H E R M O E L E C T R O E L A S T I C I T Y  

A. O. Vatul'yan, A. Yu. Kiryutenko, and A. V. Nasedkin UDC 539.3:541 

The behavior of dielectric media with allowance for pyroelectric and piezoelectric effects within the 
framework of a linear quasi-electrostatic approximation is described by the theory of thermoelectroelasticity 
(thermopiezoelectricity) [1]. The subsequent development of this theory is reflected in [2, 3]. A small number 
of papers are devoted to the properties of associate thermoelectroelastic waves. Dispersion relations for a 
series of semi-confined thermoelectroelastic media were analyzed in [4, 5]. 

In this paper, the structure of plane waves in an unconfined thermoelectroelastic medium of 6 mm class 
is investigated. Dimensionless parameters that reflect the associations of mechanical, electrical, and thermal 
fields are determined. The effect of associating on the velocities and damping factors of modified electroelastic 
and thermal waves is studied. Dependences of dispersion properties of plane waves on frequency of vibrations 
and direction of their propugation are analyzed. Numerical calculations are performed for the concrete 
thermoelectroelastic medium of barium titanate (BaTiO3). Fundamental solutions of the two-dimensional 
problem of linear thermoelectroelasticity for a medium of 6 mm class are studied. Representations in the 
form of simple integrals over a finite interval are constructed which are convenient for implementation of the 
boundary element method. 

1. Ana lys i s  o f  P l a n e  W a v e s  in an Unconf ined  T h e r m o e l e c t r o e l a s t i c  M e d i u m .  Let us consider 
the equations of motion of a thermoelectroelastic medium for piezoceramics polarized along the Oxa axis 
(6 mm class) [3]: 

LijUj = 0. (1.1) 

Here U = {ul, u2, u3, ~, 0) is the vector of unknowns (uj are the components of the displacement vector, ~0 is 
the potential, and 0 is the temperature increase above a natural state), and L 0 are the partial differential 
operators defined by the formulas 

Lll = Clio 2 .jr_ 0.5(c11 - c12)0 2 + c440 2 - pO 2, L12 = L21 = 0.5(Cl1 -}- c12)0102, 

L13 = L31 -- (c13 + C44)0103, L14 = L41 -- (e31 + e15)0103, L15 -- -71101, 

Ls, = To71,0,0,,  L22 = 0.5(cu - c,2)02 + cn022 + c44023 - pO 2, 

L23 -- L32 = (c,3 + (::44)0203 , 

L25 ---- --71102, L52 -- T0711020t, 

= e 2 L34 = L43 e15(02 -[- 92 ) -}- 3393, 

L,4  = + + a3 0 ), 

L24 = L42 = (r + e15)0203, 

L35 = --73303, L53 = To733030t, 

L45 = 9303, L54 = -Tog303Ot, 

(1 .2)  

L55 = ( pc ,  o ,  - k , , o ,  - k,10  - k330 ), 

where cij are the elastic moduli, eij are the piezoelectric moduli, aij are the dielectric permittivities, 7ij are 
the thermal-stress coefficients, 9i are the pyroelectric coefficients, kij are the thermal conductivity coefficients, 
ce is the heat capacity, p is the density, and To is the natural state temperature in the Kelvin scale. 
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We make system (1.1) nondimensional by introducing the following dimensionless parameters and 

variables: 

~.q = cq/c33, aj = u j / h ,  Oj = hOj, 

= = 

;tij = 70 qTo/(csspc,  ), 

~j = z j / h ,  i = t / to ,  Dr=toO,, 

Next, assuming that h2p/(t2c33) = 1 and k33to/(pceh 2) = 1 and setting po = p, ~ = k33/(pce), 

v 2 = c33/p, and 00 = CToc33/(pce), we obtain to = ee/v~ and h = oe/vo. 
The chosen method of nondimensionalization reduces the system of differential equations (1.1) to a 

form that is convenient for the subsequent analysis and finding the parameters of fields associating. Thus, the 
coefficients of 02 / ) j /0 t  2 and O0[Ot are equal to unity, and the coefficients of 02/) j /0~ 2 on the order of unity. 
The quantities eia determine electromechanical relations and are on the order k2/(1 - k2), where k 2 is one of 
the static coefficients of an electromechanical relation (CEMR) [6]. Since k 2 < 0.5 for real piezoelectric media, 

"2 
we have 0 < eic , < 1. The quantities 7ij define associating of elastic and thermal fields. Moreover, -2 "y~j are 
completely analogous to associating constants in thermoelasticity problems [7] and are small for most media. 
Finally, g3 reflects the associating of electric and thermal fields. From the positive definiteness of internal 
energy it follows that for a piezoelectric medium of 6 mm class the inequality ~33pcE/To >1 g~ holds and, 
hence, ~ < 1. We note also that the time and spatial characteristic parameters to and h and the quantity 
ae are usual with nondimensionalizing of the thermoelasticity equations [7], and v0 has the meaning of the 
characteristic velocity of acoustical waves in a piezoelectric medium. Below we shall omit the tilde sign above 
dimensionless quantities. 

We investigate plane waves in an unconfined thermoelectroelastic medium, i.e., we seek a solution of 
nondimensionalized equations (1.1) in the form 

Uj = Xj  exp [i(wt - r/nx)], (1.3) 

where w is the dimensionless real frequency of vibrations related to the dimensional frequency f / b y  the formula 
w = f~/f~. [f~, = css/(p~e)], n is a unit vector that determines the direction of wave propagation, and ,7 is a 
generalized (in general, complex) dimensionless wave number. 

Substituting (1.3) into (1.2) and equating the determinant of the resulting algebraic system to zero, we 
obtain a dispersion relation between w, ,7, and n. The set of roots of these equations is divided into two subsets. 
One of them characterizes a non-associated, purely elastic SH-wave that is polarized in the plane Ozlx2  and 

not subjected to dispersion and damping; its velocity is v, = wit  1 = r  - Cl2)(n 2 + n 2) + c44r~ 2, where 
hi, n2, and n3 are the components of the vector n. The second subset coincides with the set of zeros of the 
determinant D(w, ,7) = r/2D0(w, 77) for fixed n. 

Let us investigate the root set structure of the equation 

Do(w, 17) = O. 

If we put z = ,7/w, Eq. 1.4) is written as 

Cl z2 -- 1 CO z2 eOZ 

co z2 c3 z2 -- I e3 z 

eoz e3z --3 

"~I ~z 73~z -g~ 

(1.4) 

71ClZ 

73~z 
- g ~  

i K w z  2 - t 

= 0. (1 .5 )  

Here a -- C +  n 2 = cos~b, fl = n3 = s ine,  cl = c n a  2 + C44fl 2, CO ---~ (Cl3 -{- C44)~fl, e0 = (fi31 "~- el5)~fl, 

C3 = C44 a2 -~- C33~ 2, e3 ~--- el5a 2 n L e33~ 2, :~ = 311 a2 -~ 333fl 2, K = kll/k33 a2 -~- ~2, 7i = 7{i, and g = g3. 

Introducing ~ and ~j by the formulas g = ~ and 7j = z'~./, from (1.5) after certain transformations we obtain 

iKwz2(al  z4 - a2z 2 + as) - (A1 z4 - n2z 2 + As) = 0, (1.6) 
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where Aj = a j + e 2 q j  (j = 1, 2, and 3); ql = bl - d l  - f l ;  q2 = b 2 - d 2 - f 2 ;  q3 = -d3 ;  al = - 3 c l c 3 + 2 c 0 e 0 e 3 -  
~c~ T ~ - dc~ ;  ~2 = - ( ~ ( ~ ,  + c3) + ~ + d ) ;  ~3 = -~ ;  b, = -20~[~3~(~0~0  - ~3~,) + ~ ,~(c0~3 - ~0~)1; 
b2 = 20/3[e0"~la + e3~3~]; dl = -g2/~2(ClC3 - Co(]); d2 = -g2/~2(Cl -b c3); d3 -- _~2~2; fl = 72a2(3c3 + e32) + 

"r3~-2 2(c0 ~ + ~ ~) - 2#~#~/~(~0e3 + ~0); and f2 = ~ ( ' ~  + ~ ) .  
Equation (1.6) has six real roots z of which only three roots zj (j = 1, 2, and 3) with I m z j  > 0 

( Imr  0 > 0 and r/j = zjw) will be analyzed. 
For e = 0 we have a non-associated problem of thermoelectroelasticity, and we find the roots zj in 

explicit form: 

z 2 = 1 / ( i K w ) ,  z 2 = (a2 + r ) / (2a , ) ,  %2 = ( a 2 -  r ) / (2a , ) ,  r = ~ a  2 -  4ala3. (1.7) 

The first root characterizes a purely thermal wave with velocity v~ = Re( l /z1)  and damping u~ = 
- I r a  (wz~). The second and third roots characterize electroelastic waves that  are not subjected to dispersion 
and a damping. The velocities of these waves v~ = Re(1/z~) (i = 2 and 3) are identical to those given in [8]. 

Setting Y = z 2, we rewrite Eq. (1.6) as 

( i K w Y  - 1)(alY 2 - a2Y + a 3 )  - -  8 2 ( q l y 2  - -  q2Y + q3) = 0. (1.8) 

Taking into account that  the parameter  ~ is small for real piezoelectric media, we seek the roots ~ of 
Eq. (1.8) in the form of an expansion in powers of the parameter  ~: 

Yj = yj0 + e2yjl + . . .  

The first terms of this expansion are given by the formulas 

u,o = z~, y l ,  = (qly~o - q 2 y o  + q3)/[ iK, .(aly~o - a ~ y o  + a3)], 
Yix = (qlY~ - q2Yo + q3) /[( igwyo - 1)(2aly0 - a2)], j = 2, 3 

[z i are given in (1.7)]. 
For the associated problem for ~ r 0 we have a modified quasi-thermal wave (j = 1) and two modified 

quasi-electroelastic waves (j  = 2 and 3) subjected to damping and dispersion. It should be noted tha t  the 
acoustical frequencies w for which the theory of thermoelectroelasticity is substant ia ted are within the limits 
w << 1 (fl << f l . ) .  In this connection it is also important  to consider the asymptot ic  behavior of the roots 
X 1 = 1/z  2 for small w which are determined from (1.8) in the form 

X j  .: xjo 'b WXjl -b w2xj2 + . . . ,  j = 1, 2, and 3, 

where Xl0 = 0; Xll = i K a l / A l ;  X12 ----- X l l ( A 2 x l  - iKa2) /A1;  x20 = (A2 + r l ) / (2A3) ;  rl = ~ A  2 - 4A3A1; 

x30 = (A2 + rx) / (2A3);  xkl  = i K ( a l  - a2zko + a3X2ko)/[Xko(2A3xko -- A2)] (k = 2 and 3); and x/c2 = 
zkl[ iK(2a3xko -- a2) -- zk l (3A3zko  -- A2)l/[xko(2A3xko - A2)]. 

Using methods  of per turbat ion theory, we can construct the dependences of the velocities and dampings 
of thermoelectroelastic waves on the associating coefficient e for the directions ~b = 0 and ~b = ~-/2: 
(1) For ~b = 0 

v2 = cv~-~'(1 + r q12cll '~ e2 ;r~x/'~fkm ~ 
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(2) For ,p = ~r/2 

{ ( - - )  Vl 2(1 --~2~2) 1 -- r (732 2~3~e33 -t- ~2e23)(c33 -t- e23 w) 
= 2 ( ~  2 + cs3 + e23) ' 

( 
Vl = 2(1 -- Z2ff2) i -- s 2(W 2 Jr C33 n L e23) ' 

v 2 =  1 - r  1+~2  - 2(w 2+c33+e233) 

~2 = ~ - ~ - ~ - ~  ~'~ 2@2 + c33 + ~s) ' ~3 = ~ v ~ ,  ~3 = 0. 

Here kra = kl l /k33;  g = e~, and 7j = e'~j (j = 1 and 3). 
These formulas enable us to analyze the dependences of the velocities and dampings on associating of 

the problem and the frequency of vibrations. We note that  the structure of the dispersion equations (1.6) and 
(1.8) and the properties of plane waves are similar in many respects to those in the case of a thermoelastic 
transversely isotropic medium considered in [9, 10]. 

Figures 1-5 show the propagation and damping velocities of modified thermal and electroelastic waves 
for barium ti tanate versus the propagation direction characterized by the polar angle r for various w = WR, 
temperature of the undisturbed state To = 300 K, and ~ = 0.01. Physical constants are the same as in [11]. 

A simple analysis leads to the following conclusions: the velocities of quasi-electroelastic waves are 
practically independent of the frequency of vibrations [one of these waves will be named the quasi-longitudinal 
wave (v2 and v2) and the second the quasi-transverse wave (v3 and v3)]. The dampings of these waves depend 
significantly on the frequency of vibrations. Moreover, the damping of the quasi-longitudinal wave depends 
weakly on the direction of its propagation, and the damping of the quasi-transverse wave depends significantly 
on the angle ~b. Note also that  the quasi-transverse wave becomes purely transverse and undamped for the 
directions ~b = 0 and r = 7r/2. The velocity and damping of the quasi-thermal wave depend significantly on 
the frequency of vibrations (as in the thermoelasticity problems in [7]). 

2. C o n s t r u c t i o n  of  F u n d a m e n t a l  So lu t i ons  for  a T w o - D i m e n s i o n a l  T h e r m o e l e c t r o e l a s t i c i t y  
P r o b l e m .  The question on the construction of fundamental solutions in linear thermoelectroelasticity can be 
solved on the basis of analysis of the zeros of D0(w, ,7). This question is important  for applications, in particular, 
for the formulation of the boundary integral equations and the implementation of boundary element method. 
We confine our attention to the case of plane deformation of a 6 m m  class medium. We assume that  u2 = 0 
and all other quantities depend only on zl and z3. The vibration regime is considered steady according to 
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the law exp [-iwt]. In this case Lij is written as 

Lll = c11012 + c44 02 "Jr" / XO2, L12 = L21 = (c13 q- c44)0103, LI3 : L31 = (e31 -{- c15)0103, 

L14 = -"/11(91, L22 = c44012 -I- c3302 q'-/xo 2 , L23 --~ L32 = el5Ol 2 + e33032, L24 = -"/3303, 

L42 = -{wTo'y3303, L33 : -(~1102 + 33302), L34 : 9303, L41 : -iwTo~[llOl, 

L43 = iwT09303, L44 = -iwpc~ - knO 2 - k3302, 

and the vector of unknowns U as U = {ul, us, % 0}. 
The functions 9~'~)(x,~) that  satisfy the system of equations L O ~  -'n) + 6i,n6(x,~) = 0 and vanish 

at infinity are considered fundamental  solutions. Using Fourier transform, we can easily construct integral 

representations for ~ .~) :  

1 f P j , . ( e ,w)  
~"n)(x '~)  = (2702 Po(ot,w) e x p [ i ( ~ , { - x ) ] d o ~ .  (2.1) 

Here Pjm(O~, ,~) and P0(a,  w) are polynomials in c~ and w; and ~ = (al ,  an). We note that  representation (2.1) 
is not very suitable for practical applications, and, therefore, we shall simplify it by analysis of the integrands 
and contour integration. 

It should be noted that  the polynomials Pjm(az, an,w) in (2.1) are of different orders (in contrast to 
the "pure" electroelasticity problem in [12]), i.e., some of them are polynomials of the 6th order in c~ and 
the remaining polynomials are of the 5th order. According to such sign, we divide these polynomials into 
two types: 1) polynomials of the 6th order and 2) polynomials of the 5th order. The first type polynomials 
possess the evenness property Pjm(-al, -a3, w) = Pim(az, aa, w), and while the second type polynomials the 
oddness property Pjm(-az,-a3,w) = -Pjm(al,a3,w). The polynomials P14, P24, P34, and those obtained 
by permutat ion of indices are related to the second type, and the remaining polynomials to the first type. 
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To simplify (2.1) for the first type we represent the integrand in the form 

Pjm(aCOS~b, asinq,,w) 3 ajmk(~b,w) 

[r = 0 ,  ajmk(Tr + ~b,oJ) = ajmk(~3,w), and r + ~b,w) = r = waz~] and set I x - ~1 = r, cos~bl = 
(~1 - xl) /r ,  and sin ~bl = (~3 - z3)/r. Then,  we have 

I ~2r. 3 aJmk(~b'w) e x p ( i a r c o s ( ~ , - r  

_ 1 ? ] ~  ajmk(~',w ) [exp(iarcos(~b_~bl))+exp(_iarcos(~b_~bl))]adad~b" 
(2~)2 ~2 _ r162 

0 0 k = 0  

Let us consider the integral 
OO 

[ exp (iaz) + exp ( - iaz )  
I2(z, r ~ - - - ~  ada,  I m (  > 0, Re~ > 0. 

d 
0 

To evaluate it we introduce the contours 

C~ = [O, nll,.JC+[,.J[in, O] and Cr = tO, RII,.JC~I,.J[-iR, O l 

(C + and C/~ are parts of the circumference with radius R with its center at the coordinate origin which lie 
in the first and fourth quadrants, respectively). 

Using the contour integration and Jordan's lemma [13], we obtain 
CO 

f exp (--TZ) I2(z, r = ~i exp (iCz) + 2 : + ~2 ~ d~. 
0 

We write the latter integral in the form 

I2(z, () = a'i exp (i(z) -- 2[cosi(~z) cos ((z) + sini(fz) sin ((z)], 

where cosi(z) and sini(z) are the integral cosine and sine. 
For z < 0, I2(z, () is evaluated similarly. Uniting these two cases, we have the following representation 

for the fundamental solutions: 

(27r)2 aj,,k(r cos (r - r de, (2.2) 
0 k = 0  

where F2(z) = ( r i /2 )  exp (iz) - cosi(z) cos (z) - sini(z) sin (z). 
R e m a r k s .  (1) F2(~0) denotes the limiting value of the function F2(z) as z ~ 0 with accuracy 

to constants that  are insignificant from the viewpoint of construction of the fundamental solution, i.e., 
F2((0r[ cos (r  - ~bl)[) = - - I n  [r cos (r - ~bl) [. 

(2) Since only P33(0,r # 0 of the 6th order polynomials and the relation Pim(a,~b,w) = 
a2P~m(~,r is valid for the remaining [P/*m(~,~b,w) are 4th order polynomials], we have all aimo = 0 
except for a330, and the representation (2.2) can be written as 

~ ( m )  _ 
3 

1/ 
(27r)2 a330(~b, w)In Iv cos (r - r d~b (63j63m) 

0 

3 

ajm~(~, w)F2(~k(r ~)lr cos (r - r (2.3) 
k = l  
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We simplify representation (2.1) for polynomials of the second type. We take into account that the 
representation Pj,~ (ct, r w) = -iaP~m(ot, r w) is valid for polynomials of the second type, where Pj*m(ct, r ~) 
are polynomials of the 4th order. In this case, we have 

Pjm(a cos'~, c~ sin @,w) 3 bjmk('k,w) 

k=l 

where + = 

Proceeding similarly and introducing the function Fl(z) = (Tr/2)exp(iz) - (cosi(z)sin (z) - 
sini(z) cos (z)), where z > 0, we finally obtain 

ql~m)_ 1 ] ~ b j m k ( r  F,((l~(r162162162 b (2.4) 
(27r) 2 ~k(~b,w) 

0 k = l  

( j = 4 ; m = l ,  2, and 3; m = 4; and j = l, 2, and3). 
Integral representations (2.3) and (2.4) make it possible to apply effectively the boundary element 

method to thermoelectroelasticity problems. They have characteristic logarithmic singularities intrinsic for 
two-dimensional problems. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01259). 
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